

β-Keto-Ester Chemistry and Ketolides. Synthesis and Antibacterial Activity of 2-Halogeno, 2-Methyl and 2,3 Enol-Ether Ketolides

Alexis Denis,^{a,*} François Bretin,^a Claude Fromentin,^a A. Bonnet,^b G. Piltan, Alain Bonnefoy^d and Constantin Agouridas^c

^aMedicinal Chemistry, Aventis Pharma, 102 route de Noisy, 93235 Romainville Cedex, France

^bChemistry, Aventis Pharma, 102 route de Noisy, 93235 Romainville Cedex, France

^cCore Research Functions, Aventis Pharma, 102 route de Noisy, 93235 Romainville Cedex, France

^dAnti-infectives Disease Group, Aventis Pharma, 102 route de Noisy, 93235 Romainville Cedex, France

Received 11 April 2000; revised 16 June 2000; accepted 5 July 2000

Abstract—The effect of 2,3 modifications on the antibacterial activity of ketolides was evaluated by introducing substituents in position 2 and converting the C-1, C-2, C-3 β-keto-ester into stable 2,3 enol-ether or 2,3 anhydro derivatives. Introduction of a fluorine in C-2 is beneficial with regard to the overall antibacterial spectrum whereas the enol-ether and 2,3 unsaturated compounds, as well as the bulky *gem* dimethyl or 2-chloro derivatives, are less active particularly against erythromycin resistant strains. A 2-fluoro ketolide derivative demonstrates good antibacterial activity and in vivo efficacy against multi-resistant *Streptococcus pneumoniae*. Compared to azithromycin against *Haemophilus influenzae*, this compound is equivalent in vitro and slightly more active in vivo. These results demonstrate that within the ketolide class, to retain good antibacterial activity, position 2 needs to remain tetrahedral and tolerates only very small substituents such as fluorine. © 2000 Elsevier Science Ltd. All rights reserved.

The ketolides, 1a,b exemplified by telithromycin, 1b are a major new class of semisynthetic macrolide derivatives exhibiting antibacterial activity against erythromycinresistant Streptococcus pneumoniae and Haemophilus influenzae. The fact that the ketolides do not induce MLS_B resistance² bestows therapeutic utility against erythromycin-resistant *S. pneumoniae* and other Gram positive pathogens. The ketolides, are characterized by a 3-keto function that replaces the L-cladinose, and thus define a β-keto-ester at the C-1, C-2, C-3 positions of the macrolactone ring. In addition to the 3-keto function, the most important features for in vitro and in vivo activities of ketolides are: a 11,12-cyclic carbamate moiety and a hetero-aryl side chain, generally linked to the ketolide backbone by the carbamate nitrogen. All these groups are also present in different series synthesized by Abbott³ (e.g., 6-O-substituted ketolides and azaimino tricyclic ketolides). However, apart from the recent report of 2,3 anhydro⁴ (Anhydrolides) derivatives, very little is known about the relative importance of

Chemistry

Fluorination at C-2 was achieved in 3 steps from telithromycin (Scheme 1). First quantitative silylation of the 2' alcohol with (TMS)₂NH/imidazole gave a protected intermediate that was reacted with *t*BuOK and *N*-fluorosulfonimide (NSFI) to give stereospecifically, after desilylation with Bu₄N⁺F⁻, the desired fluoro ketolide I in 83% yield. The absolute stereochemistry of this compound was later demonstrated by synthesizing I from the fluoro-enone VII. The starting enone^{1a} was

0960-894X/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: \$0960-894X(00)00392-9

position 2 for the overall activity of ketolides (Fig. 1). To address this question, we have exploited the chemical reactivity of the 1,3 β -keto-ester function of ketolides to modify the C-2 and C-3 positions. This approach has allowed us to introduce various electrophiles (halogen atoms or a methyl group) in position 2 and to convert the enolate intermediate into new stable 2,3 enol-ether derivatives. At the same time we have synthesized the 2,3 anhydrolide homologue of telithromycin to compare the overall effect of 2,3 modifications on antibacterial activity of ketolides.

^{*}Corresponding author. Tel.: +33-0-1-49-91-46-67 fax: +33-0-149-91-34-08; e-mail: alexis.denis@aventis.com

Figure 1.

Scheme 1. (a) $(TMS)_2 NH/imidazole/THF$; (b) $tBuOK/NSFI/THF/-10^{\circ}C$; (c) $N^+Bu_4F^-/THF$; (d) Ac_2O/CH_2Cl_2 ; (e) carbonyldiimidazole $/DBU/RNH_2/THF/rt$; (f) MeOH.

first fluorinated similarly to **I** to give **VII** in 69% yield. This compound was then crystallized and the absolute stereochemistry of C-2 determined (Fig. 2). Finally, after acetylation in 2', **VII** was reacted with carbonyl-diimidazole and DBU in THF and the corresponding 4-[4-(3-pyridyl)-imidazolyl]lbutyl amine added to generate **I** in 67% yield. As the two different synthetic pathways yielded the same compound (1 H NMR, especially 2-Me 8 0 (ppm) 1.79 (d, $J_{H,F}$ =21.5 Hz, 3H), and melting point = 118 °C), the absolute S configuration was attributed to **I**. It should be mentioned that this fluorination reaction was also carried out stereospecifically in the aza-imino tricyclic series. The chlorine atom was easily introduced by radical chlorination using N-chlorosuccinimide with AIBN at 40 °C. **II** was obtained in 38% yield as a single

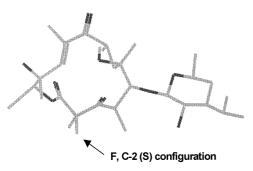


Figure 2. X-ray structure of VII.

isomer of unknown stereochemistry (Scheme 2). Methylation at C-2 was carried out by treatment of the 2'-OAc protected derivative of telithromycin VIII with methyl iodide and sodium hydroxide in the presence of Bu₄N⁺HSO₄. Removing of the 2'-OAc in methanol gave III in 13% yield (Scheme 2). The 2,3 enol-ether derivatives were synthesized by O-alkylation of VIII with known chloromethylethers. IV was obtained in 21% yield by treatment with Br(CH₂)OCH₂Cl and NaH in DMF followed by amination using dimethylamine in refluxing ethanol. Similarly V was obtained in 40% yield by alkylation with $C_6H_5(CH_2)_3OCH_2Cl$ (Scheme 2). Finally, the 2,3 anhydro compound VI was synthesized in 37% yield from the known acyl-imidazole intermediate⁴ by reaction with the corresponding amine in acetonitrile and deprotection of the 2'-OAc (Scheme 3); in agreement with the observation made by Elliott⁴ for the anhydrolide series, 17% of the corresponding C-10 epimer were also isolated.

Results and Discussion

All the ketolides and analogues were tested in vitro by standard agar dilution method against both erythromycin-susceptible and erythromycin-resistant staphylococci, streptococci and pneumococci including constitutive (EryRc) and inducible (EryRi) phenotype. In addition, one strain of *H. influenzae* was also tested. Without

Scheme 2. Synthesis of 2,3-enol-ether, 2-dimethyl and 2-chloro ketolides; (a) $MeI/NaOH/Bu_4N^+HSO_4^-/CH_2Cl_2$; (b) MeOH; (c) N-chlorosuccinimide/AIBN/CCl₄/40 °C; (d) $NaH/DMF/Br(CH_2)_2OCH_2Cl$; (e) $EtOH/(CH_3)_2NH/reflux$; (f) $NaH/DMF/C_6H_5(CH_2)_3OCH_2Cl$; (g) MeOH.

Scheme 3. Synthesis of 2,3-anhydro telithromycin; (a) NaH/ carbonyldiimidazole/CH₃CN/rt; (b) RNH₂/DMF; (c) MeOH.

exception, the reference macrolides clarithromycin and azithromycin were inactive (MICs >40 µg/mL) against erythromycin resistant strains whatever the phenotype.

All the compounds were inactive against a constitutively erythromycin-resistant strain of *S. aureus* (MIC>40 μ g/mL). The replacement of a C-2-hydrogen atom for a fluorine in I (HMR3562) gave a compound that demonstrated good activities against strains susceptible to erythromycin (at least one order of magnitude higher than those of clarithromycin). Furthermore I was very

effective against inducibly resistant *S. aureus* and *S. pneumoniae* as well as constitutively resistant *S. pneumoniae*. I was equal to azithromycin and telithromycin against *H. influenzae* (Table 1). The 2-chloro II and 2-methyl compounds III were both less active than the parent compound; particularly they were almost ineffective against EryRi *S. aureus* and five times less active against EryR *S. pneumoniae*.

The two planar derivatives IV and V were generally weakly active against most of the strains tested with a

Table 1. In vitro activity of 2,3 modified ketolides^a

	MIC (µg/mL)										
	S. a.	S. a.	S. a.	S. pyo.	S. p.	S. p.	S. p.	S. p.	Н. і.		
	EryS 011UC4	EryRi 011GO25i	EryRc 011CB20	EryS 02A1UC1	EryS 032UC1	EryRc 030PW23c	EryRc 030SJ1	EryRi 030SJ5i	351HT3 (β lactamase +)		
AZI	0.3	>40	>40	0.6	0.15	>40	>40	>40	1.2		
CLA	0.3	>40	>40	0.08	0.04	>40	>40	>40	5		
TEL	0.04	0.08	>40	≤0.02	≤0.02	0.04	≤0.02	≤0.02	1.2		
I	0.02	0.08	>40	≤0.02	≤0.02	≤0.02	≤0.02	≤0.02	1.2		
II	0.6	>40	>40	0.04	0.04	1.2	5	0.6	2.5		
III	0.6	1.2	>40	0.02	0.02	2.5	2.5	0.6	2.5		
IV	2.5	20	>40	0.3	0.15	2.5	10	5	20		
V	5	>40	>40	0.15	0.8	20	20	20	>40		
VI	0.08	0.3	>40	0.02	0.02	0.3	10	2.5	2.5		

^aAZI = azithromycin; CLA: clarithromycin; TEL: telithromycin; EryS = susceptible; EryRc = constitutive MLS resistance; EryRi = inducible MLS resistance. S. a. = Staphylococcus aureus; S. pyo. = Streptococcus pyogenes; S. p. = Streptococcus pneumoniae; H. i. = Haemophilus influenzae.

Table 2. In vivo efficacy of 2-fluoro ketolide I

	ED ₅₀ (mg/kg) ^a									
	S. a.b	S. p.	S. p.	S. p.	Н. і.					
	EryS	EryS	EryRc	EryRi	AmpR 351RD7					
	011HT17	032UC1	030MV2	030SJ5i	(β lactamase +)					
CLA	12	2	>50	>50	>150					
AZI	72	4.5	>50	>50	94					
I	9	1.5	2	4.3	56					

^aEffective dosage that protect 50% of mice from lethal infection after oral administration; AmpR = ampicillin resistant.

complete loss of activity against the Ery R strains (MICs>2.5–40 μ g/mL). In contrast, the anhydrolide VI retained activity against susceptible and EryRi S. aureus strains. However it was poorly active (4 to 8 times less active than I) against erythromycin resistant S. pneumoniae whatever the phenotype.

In vivo evaluation

The in vivo efficacies of compound I to VI and reference compounds clarithromycin and azithromycin were assessed by acute lethal murine infection models caused by susceptible and erythromycin-resistant Gram positive cocci and H. influenzae (Table 2). Against infections caused by erythromycin susceptible strains, I exhibited in vivo efficacies close to clarithromycin and substantially better than azithromycin. Unlike classical macrolides (CLA, AZI) which show complete inactivity with ED₅₀ up to 100 mg/kg, I demonstrated excellent anti-pneumococcal efficacy in infections caused by EryRi and EryRc S. pneumoniae, the corresponding effective doses for I ranging between 2 to 4 mg/kg. Against H. influenzae, I exhibited a 2-fold improvement in efficacy over azithromycin while clarithromycin was inactive under $150 \,\mathrm{mg/kg}$.

Conclusions

The β-keto-ester function of ketolides can be chemically exploited to generate new 2-modified ketolides. Introduction of a fluorine at C-2 by electrophilic fluorination results in good antibacterial activities whereas introduction of larger substituents or 2,3 anhydro or enol-ether modifications result in loss of activity and higher MIC. The 2-fluoro ketolide I (HMR3562) displays, with the exception of constitutively MLS_B resistant *S. aureus*, good in vitro and in vivo activities against all erythromycin resistant Gram positive cocci, including multi-resistant *S. pneumoniae*. In addition, I is active in vitro against *H. influenzae* to a similar extent as azithromycin and demonstrates good in vivo activities against this

pathogen. These results demonstrate that within the ketolide class, to retain good antibacterial activity, position 2 needs to remain tetrahedral and tolerates only very small substituents such as fluorine.

Acknowledgements

The authors wish to thank C. Lang (Structural Analysis Department) for her support.

References and Notes

- 1. (a) Agouridas, C.; Denis, A.; Auger, J.-M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J.-F.; Dussarat, A.; Fromentin, C.; Gouin D'Ambrières, S.; Lachaud, S.; Laurin, P.; Le Martret, O.; Loyau, V.; Tessot, N. J. Med. Chem. 1998, 41, 4080. (b) Denis, A.; Agouridas, C.; Auger, J.-M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J.-F.; Dussarat, A.; Fromentin, C.; Gouin D'Ambrières, S.; Lachaud, S.; Laurin, P.; Le Martret, O.; Loyau, V.; Tessot, N.; Pejac, J.-M.; Perron, S. Bioorg. Med. Chem. Lett. 1999, 9, 3075.
- 2. (a) Inoue, M.; Sato, Y.; Kuga, A.; Okamoto, R. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CL, 1998, Abstract E-138. (b) Bonnefoy, A.; Girard, A.-M.; Agouridas, C.; Chantot, J.-F. *J. Antimicrob. Chemother.* **1997**, *40*, 85.
- 3. (a) Ma, Z.; Clark, R. F.; Nilius, A. M.; Flamm, R. K.; Or, Y. S. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CL, 1999, Abstract F-2133. (b) Or, Y. S.; Ma, Z.; Clark, R. F.; Chu, D. T.; Plattner, J. J. WO 98/09978 A1, 1998. (c) Phan, L. T.; Or, Y. S.; Spina, K. P.; Chen, Y.; Tufano, M.; Chu, D. T.; Nilius, A. M.; Bui, M.-H.; Plattner, J. J. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Miami, FL, 1997, Abstract F-263.
- 4. Elliott, R. L.; Pireh, D.; Griesgraber, G.; Nilius, A. M.; Ewing, P. J.; Ha Bui, M.; Raney, P. M.; Flamm, R. K.; Kim, K.; Henry, R. F.; Chu, D. T. W.; Plattner, J. J.; Sun Or, Y. *J. Med. Chem.* **1998**, *41*, 1651.
- 5. Spectral data for I (HMR 3562): mp: 118 °C; FAB- $MS = 830^{+} (M + H^{+}); {}^{1}H NMR (400 MHz, CDCl_{3}): \delta 0.87 (t,$ 3H) CH₃CH₂, 1.01 (d, 3H) 10-CH₃, 1.19 (d, 3H) 8-CH₃, 1.21-1.68 (m, 1H) H₄', 1.24 (d, 3H) 5'-Me, 1.31 (d, 3H) 4-CH₃, 1.34 (s, 3H) 6-CH₃, 1.79 (d, J = 21.5 Hz, 3H) 2-CH₃, 1.50 (s, 3H) 12-CH₃, 1.60–1.83 (m, 1H) H₇, 1.68–1.86 (m, 4H) CH₂–CH₂, 1.50–1.97 (m, 2H) H₁₄, 2.27 (s, 6H) N(<u>CH</u>₃)₂, 2.46 (m, 1H) H_{3}' , 2.59 (m, 1H) H_{8} , 2.55 (s, 3H) 6-OCH₃, 3.11 (q, 1H) H_{10} , 3.18 (dd, J = 7.5 and 10 Hz, 1H) H_2' , 3.53 (m, 2H) H_4 and H_5' , 3.42 (s, 1H) H₁₁, 3.63–3.75(m, 2H) C_{H2}NCO, 4.01 (t, 2H) CH_2N , 4.07 (d, J = 10.5 Hz, 1H) H_5 , 4.31 (d, 1H) H_1' , 4.86 (dd, J=2 and 10.5 Hz, 1H) H₁₃, [7.55 (d, 1H) H₂, 7.33 (d, 1H) H₅] imidazole, [8.98 (s, 1H) H₂, 8.09 (dt, 1H) H₄, 7.29 (ddd,1H) H₅, 8.46 (dd, 1H) H₆] pyridine. Anal. Calc. (%) for C₄₃H₆₄N₅O₁₀F: C 62.33, H 7.77, N 8.44, F 2.29. Found : C 61.9, H 8.1, N 8.7, F 2.2.
- 6. Phan, L. T.; Or, Y. S.; Chu, D. T.; Ewing, P.; Nilius, A. M.; Bui, M.-H.; Raney, P.; Hensey-Rudloff, D.; Henry, R. F.; Mitten, M. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CL, 1998, Abstract F-127.

^bAbbreviations as footnote in Table 1.